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Abstract: A novel tool utilizing machine learning techniques was designed to forecast ap index values
for the next three consecutive days (24 values). The tool employs time series data from the 3 h ap
index of solar cycles 23 and 24 to train the Long Short-Term Memory (LSTM) model, predicting ap
index values for the next 72 h at three-hour intervals. During periods of quiet geomagnetic activity,
the LSTM model’s performance is sufficient to yield favorable outcomes. Nevertheless, during
geomagnetically disturbed conditions, such as geomagnetic storms of different levels, the model
needs to be adapted in order to provide accurate ap index results. In particular, when coronal mass
ejections occur, the ap Prediction tool is modulated by inserting predominant features of coronal
mass ejections such as the date of the event, the estimated time of arrival and the linear speed. In the
present work, this tool is described thoroughly; moreover, results for G2 and G3 geomagnetic storms
are presented.

Keywords: cosmic rays; coronal mass ejections; ap geomagnetic index; geomagnetic activity

1. Introduction

The term space weather describes the fluctuations in the space environment between
the Earth and the Sun [1,2]. In particular, space weather refers to the phenomena that
impact space-borne and ground-based technological systems, human life and health [3,4].
An important aspect of space weather are the geomagnetic storms (GSs) recorded on Earth.
GSs originate from the solar and interplanetary disturbances that occur when there is a very
efficient exchange of energy from solar wind into the space environment surrounding the
Earth [5–7]. The space weather prediction center of the National Oceanic and Atmospheric
Administration (SWPC/NOAA) has analyzed GSs (Geomagnetic Storms|NOAA/NWS
Space Weather Prediction Center, accessed on 1 July 2024). The largest storms are associated
with coronal mass ejections (CMEs) [8]. The effects of a CME are likely to be observed on
Earth within 96 h. Another solar wind disturbance that creates conditions able to create
geomagnetic storms is a high-speed solar wind stream (HSS) of Coronal Holes (CHs) [9].

When a GS occurs, the geomagnetic indices present variations. Geomagnetic indices
are a measure of geomagnetic activity, which is a signature of the response of the Earth’s
magnetosphere and ionosphere to solar forcing [10,11]. There are several indices which denote
magnetic disturbances, i.e., the Kp index, Ap index, ap index, AA index, AE index, etc.

The Kp index is an index that indicates global magnetic disturbances in near-Earth
space. The values of the Kp index range from 0 (very quiet) to 9 (very disturbed) in
28 discrete steps, resulting in values of 0, 0+, 1−, 10, 1+, 2, 20, 2+, . . ., 9. These values
of the Kp index (e.g., 1− or 2−) are not very easy for arithmetic manipulation, so, in
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the past, another index—ap, based on a linear scale rather than on a quasi-logarithmic
scale—was introduced.

The planetary Ap index is a very common index used to estimate the magnitude of
a GS [12]. The 3-hourly ap and the daily Ap indices are planetary magnetic activity indices,
with units of 2nT. Related to the Kp index, they are the average values of irregular disturbance
levels in horizontal field components observed at selected magnetic observatories worldwide.

The ap values are defined from the known values of Kp using a one-to-one corre-
spondence method (e.g., Kp = 1− corresponds to ap = 3) and range from 0 (very quiet
conditions) to 400 nT (extreme geomagnetic storm). Variations in Kp and ap values
(http://www-app3.gfz-potsdam.de/kp_index/qlyymm.html, accessed on 1 July 2024)
are estimated every 3 h daily [13–16]. Every day, after the computation of the average of
eight ap values, the Ap geomagnetic index is determined.

A new tool, named “ap Prediction” (http://apprediction.phys.uoa.gr/ accessed on
1 July 2024) was developed by the National and Kapodistrian University (NKUA) expert
group of the Geomagnetic Expert Service Center (G-ESC), in the frame of the ESA Space
Weather Network Development and Pre-Operation Part 1, with the aim of forecasting the
values of the ap geomagnetic index for the next 72 hours with 3-hour prediction interval.
This product is based on a machine learning approach. Specifically, the tool makes use of
archived Ap index time series at 3 h intervals from solar cycles 23 and 24 to train the LSTM
model, predicting future values from t0 (the time of the latest run) up to three days ahead,
covering 24 forecasted 3 h intervals [17].

Similar machine learning tools have been developed at the SWPC/NOAA (USA) and
at the Space Environment Prediction Center (China), and both tools predict the Kp index
3 days in advance [18], the last tool using 193 Å wavelength images of the Sun from the
SDO/AIA to predict storm arrival.

There are tools of different Space Weather Prediction Centers that predict the daily
index AP, but this new product, “ap Prediction”, is the only one that can predict the ap
geomagnetic index for the next 72 h with a 3 h prediction interval. The model seems able to
predict extreme events which decisively affect the ap index values, i.e., CME arrivals.

Predicting the ap index 3 days in advance can be useful for the protection of satellites
against space weather. Various studies have shown that satellite electronics can be damaged
by high fluxes of relativistic electrons in the radiation belts surrounding the Earth [19].
Such high fluxes of relativistic electrons can be predicted based on the time-integrated ap
or AE indices over the preceding 2 days to 3 days [20,21], allowing for the mitigation of the
detrimental effects of space weather, e.g., by temporarily shutting down satellite operations
during a particularly dangerous disturbance.

It should be noted that the ap index is a planetary index (as is the Kp index) and it
is more useful for measuring the effects of global geomagnetic activity on the Earth, in
comparison to, for example, the Dst geomagnetic index. The DST index is an index of
magnetic activity derived from a network of near-equatorial geomagnetic observatories that
measures the intensity of the globally symmetrical equatorial electrojet (the “ring current”).
DST (Disturbance Storm Time)-equivalent equatorial magnetic disturbance indices are
derived from hourly scalings of low-latitude horizontal magnetic variation. They show the
effect of the globally symmetrical westward-flowing high-altitude equatorial ring current,
which causes the “main phase” depression in the H-component field that can be observed
worldwide during large magnetic storms [22].

In this work, some information about the methodology of the machine learning
technique used by our tool is presented in Section 2. In Section 3, the algorithm for the
fully automated system of the tool, used when CME events occurred, is described. The
validation of the tool is given in Section 4. Three examples of GSs evaluated by the ap
Prediction tool are presented in Section 5. Finally, a discussion and the conclusions of this
work are summarized in Section 6.

http://www-app3.gfz-potsdam.de/kp_index/qlyymm.html
http://apprediction.phys.uoa.gr/
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2. Method of Analysis

The aim of the “ap Prediction” tool (G.171 product) (Boston, MA, USA) is to forecast
the values of the ap geomagnetic index for the next 72 h with a 3 h prediction interval. The
development of the tool is based on the Long Short-Term Memory (LSTM) model, a neural
network technique that is very apt for this type of study [23,24].

It should be noted here that LSTM networks have been widely used in fields where
sequence prediction or time-dependent data are critical [25–30]. The core idea of an LSTM
is the memory cell, which retains information over long periods. It helps the network
decide when to retain or discard information, thereby learning which parts of the data
are important.

LSTM networks are a powerful tool in machine learning, particularly well suited for
sequence prediction tasks. Their ability to model long-term dependencies and handle
sequential data makes them indispensable in various applications, from forecasting and
language processing to more complex tasks involving temporal data.

The training of the model is performed on historical data of the 3 h time intervals of
the ap index from January 1996 to July 2017 (covering the 23rd and 24th solar cycles). In
order to validate the ap tool, time series of the historical data, were randomly chosen to
estimate the next 24 values (72 h with 3 h intervals). The first layer of the LSTM model
consists of 100 neurons, while the second one consists of 50 neurons.

The LSTM model uses the most recent time series of ap index, i.e., 24 values of 3 h
time intervals, as input, and predicts the next one. The algorithm is ready to provide results
in a few seconds, as soon as new ap data are available from the Geomagnetic Observatory
Niemegk, GFZ German Research Centre for Geosciences. This implies that the ap Prediction
tool is capable of providing forecasts almost 3 h in advance. The leading time is associated
with the availability of data from the GFZ and is independent from the processing time, as
the processing time is only a few seconds.

In the case of a quiet geomagnetic period, the LSTM model operates in a satisfactory
way, providing accurate results. On the other hand, during a disturbed geomagnetic envi-
ronment, characterized by CMEs, the LSTM model should take into account information
concerning the relevant disturbances. For this reason, CME features were manually inserted
into the model by a forecaster. A data file was created, including the required information
for the estimation of the ap index in case of CME occurrence.

In the initial version of the tool, the above-mentioned procedure was applied by
a designated forecaster. Later, the ANEMOS/NKUA Expert Team, in the context of the ESA
SWESNET Network, developed a fully automatic procedure that eliminated the forecaster’s
involvement. A schematic diagram of this procedure is shown in Figure 1.
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3. Automated Process of the ap Prediction Tool

As mentioned above, in the case of a CME event occurrence, the ap Prediction tool
needs to be adjusted manually by a forecaster, who inserts the corresponding data of
the CME. In order to increase the reliability and the accuracy of the tool, a function that
substitutes human intervention was developed.

The function that was developed is complementary to the main ap tool algorithm and
converts the tool into an updated, fully automated product for the estimation of the ap
value. The development of such an algorithm has two main challenges. The first is the
estimation of which CME events will arrive and affect the Earth, and the second is the
determination of the most probable ap maximum value based on characteristics such as the
velocity of the CME, the angular width, etc. So, the algorithm that was developed consists
of two stages:

(A) During the first stage, the algorithm imports data about all CME events from the
database of Computer-Aided CME Tracking—CACTUS (https://www.sidc.be/cactus/
accessed on 1 July 2024). Such data concern the following characteristics: onset time,
principal angle, angular width, median velocity and arrival time. However, as most
of these CME events will not arrive and affect the Earth, a filtering procedure must
be applied to select only CME events that will affect the Earth’s geomagnetic field.
This procedure is accomplished by importing such CMEs from the databases of the
SOHO LASCO instrument (https://cdaw.gsfc.nasa.gov/CME_list/ accessed on 1 July
2024) and the CME Scoreboard, Community Coordinated Modeling Center of NASA
(https://ccmc.gsfc.nasa.gov/ accessed on 1 July 2024). More precisely, the algorithm
imports data from the corresponding fields of CME events, as shown in Figure 2.
After filtering the CMEs that affect the Earth, the arrival time is calculated using the
Effective Acceleration Model (EAM) [31].
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Figure 2. Fields of CCMC with CME events that are expected to affect the Earth.

(B) During the second stage, the maximum ap value of each CME is estimated. In order
to perform this procedure, the characteristics of each CME that was imported from
CACTUS are used as input variables in the machine learning (ML) algorithm that
is developed. More precisely, a non-linear regression algorithm is used, with the
dependent variable being the maximum ap value and the independent variables
being the principal angle, the angular width and the median velocity. In order to train
the algorithm, a database of all past CME events that affected the Earth is created
and is used as input parameters. According to the non-linear regression results, the
maximum ap value of the next CME event is estimated.

https://www.sidc.be/cactus/
https://cdaw.gsfc.nasa.gov/CME_list/
https://ccmc.gsfc.nasa.gov/
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4. Accuracy Validation

To validate the procedure described above, a database with all CMEs that affected the
Earth from the year 2021 to the year 2023 was created. This database contains 146 CME
events that affected the ap value from a total of 3946 CME events that occurred during
this time period. From this database, 90% of the data was used as training data, while
the remaining 10% was used as test data. The validation procedure was iterated 20 times,
using randomly selected training and test data. The maximum ap value distribution for the
selected 146 CMEs is presented in Figure 3.
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For each run of the algorithm, the actual and the predicted values of the maximum
ap were compared, and the root mean square error (RMSE) values were calculated. In
Figures 4 and 5, the results of the first run are presented. It is clear that the algorithm can
estimate ap values with high accuracy, as the results shown in Figure 5 present highly
linear behavior. This linear behavior can be proven by applying best least-squares linear fit,
where y = 1.0021x + 0.8525, with x being the predicted values, y the actual values and the
correlation coefficient r = 0.97.
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For each run, the root mean square error (RMSE) value was calculated. The results are
presented in Table 1. The average value of the RMSE was estimated to be equal to 5.078.
In comparison to the distribution of maximum ap values in Figure 3, the RMSE value is
very low, so the accuracy of the procedure is relatively high. It is important to note that
this procedure’s technique provides high accuracy and can successfully upgrade the ap
Prediction tool to be fully automated.

Table 1. The RSME values of each run of the algorithm.

RUN1 RUN2 RUN3 RUN4 RUN5 RUN6 RUN7 RUN8 RUN9 RUN10
4.527 4.627 5.234 3.920 5.612 4.327 5.698 6.234 5.431 4.312

RUN11 RUN12 RUN13 RUN14 RUN15 RUN16 RUN17 RUN18 RUN19 RUN20
4.180 3.943 5.618 6.237 5.5451 5.893 3.457 6.448 5.741 4.973
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Then, 5 new random runs, similar to the above 20 runs, were repeated in order to
calculate the Pearson’s correlation coefficient r between the predicted ap index and the
real ap index that were calculated for these new random runs. The results are presented in
Table 2. For these five runs, the RMSE value was relatively low, and the Pearson correlation
coefficient was high enough, i.e., above 0.5, to reveal that there was a strong linearity
between the two variables. Furthermore, the index of agreement was also calculated, and
the values extracted were high enough, i.e., over 0.9, to show high linearity between the
observed and the predicted data.

Table 2. RMSE values and correlation coefficient r.

RUN1 RUN2 RUN3 RUN4 RUN5
RMSE 5.237 4.983 6.112 7.328 5.913

r 0.78 0.79 0.83 0.59 0.71
Index of agreement 0.92 0.97 0.99 0.9 0.92

5. Results from the ap Prediction Tool
5.1. The Case of the Geomagnetic Storm on 2 September 2023

The forecaster from the Athens Cosmic ray Group (NKUA) successfully predicted the
value of the apmax index during the G1-G2 geomagnetic storm which was registered on
2 September 2023 after the arrival of CMEs. A partial-halo CME was observed in LASCO
C2 imagery on 30 August 2023 at 22:12 UT. This specific CME was predicted to reach Earth
between 2 September 2023 at 21:46 UT and 3 September 2023 at 01:23 UT, as was shown by
the EAM tool.

Following this, another fast CME was observed on 1 September 2023 at 03:24 UT,
associated with a long-duration, M1.2-class solar flare. This CME was predicted to reach
Earth between 2 September 2023 at 16:48 UT and 3 September 2023 at 13:30 UT according
to EAM predictions.

After the first observed CME, the forecaster of the NKUA/Cosmic Ray group started
to update the ap Prediction tool with data regarding the function of the CME in the file
“CME_CH_data .csv” with the following information stated last: “2023, 09, 03, 00, 00, 56, 3”.

The prediction output from the tool regarding the arrival of CMEs on 3 September
2023, with a maximum impact on ap at 56 nT and a potential time profile of i = 3, is
presented in Figure 7a. In this figure, the cyan color indicates ap values 0–3, while the lime
color indicates ap-values 4–7. The ap values from 9 to 15, 18 to 32, 39 to 154 and >179 are
represented by yellow, orange, red and magenta, respectively.

In Figure 7b, it is clear that the predicted maximum ap value and the time of arrival
were predicted with high accuracy. A remarkable difference is observed a few hours before
the peak value of the ap. The RMSE value between the predicted and the actual values of
the ap is RMSE = 13.4.

5.2. The Case of the Geomagnetic Storm on 24 September 2023

A CME was visible in SOHO LASCO C2/C3 and STEREO A COR2 on 21 September
at 13:38 UT. This CME was predicted to reach Earth between 24 September at 15:22 UT and
25 September at 01:02 UT, as was shown by applying the EAM tool.

A further partial-halo CME occurred on September 22 at 02:24 UT following a filament
eruption near AR 3435, triggering an M1.2 flare. This CME was predicted to reach Earth on
24 September between 20:14 UT and 23:08 UT according to EAM predictions.

The output of the tool for the geomagnetic storm on 24 September 2023 is presented in
Figure 8a. Figure 8b shows that the ap Prediction tool has high accuracy regarding time
arrival and the slopes before and after the time of the maximum ap value. The RMSE value
for this event is RMSE = 13.57.
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5.3. The Case of the Geomagnetic Storm on 5 November 2023

A CME was seen as a partial halo on 3 November 2023 at 05:48 UT. The eruption
was likely linked to a long-duration C3.2-class solar flare that peaked on 3 November at
06:17 UT. This CME was predicted by EAM models to reach Earth on November 6 between
06:56 UT and 16:05 UT. However, the actual shock arrival was observed on 5 November at
11:45 UT (CME Scoreboard (nasa.gov), accessed on 1 July 2024).

On 5 November at 22:25 UT, solar wind speed ascended to its peak value of 530 Km/s.
Furthermore, on 5 November, at 11:45 UT (http://www.swpc.noaa.gov/products/real-
time-solar-wind, accessed on 1 July 2024), the southward component of Bz reached
a maximum value of 37nT. The Dst index peaked with a value of −165 nT on 5 November
at 20:00 UT (Real-time (Quicklook) Dst Index Monthly Plot and Table (https://www.kyoto-
u.ac.jp/ja), accessed on 1 July 2024). The geomagnetic field reached strong geomagnetic
storm G3 levels on 5 November 2003.

nasa.gov
http://www.swpc.noaa.gov/products/real-time-solar-wind
http://www.swpc.noaa.gov/products/real-time-solar-wind
https://www.kyoto-u.ac.jp/ja
https://www.kyoto-u.ac.jp/ja
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The Kp index reached a maximum value of 70 on 5 November between 15:00 and
18:00 UT, with the corresponding ap index peaking at apmax = 132. The daily Ap index
value on 5 November was recorded at 62 (International Service of Geomagnetic Indices
(https://www.gfz-potsdam.de/, accessed on 1 July 2024).

Following the CME that occurred on 3 November, the Cosmic Ray group/NKUA
forecaster updated the file called “CME_CH_data.csv” of the ap Prediction tool by inserting
the following information: “2023, 11, 05, 21, 00, 56, 3”. This information suggests that the
maximum level of the ap index was anticipated on 5 November 2023 at 21:00 UT, based on
the EAM model’s prediction for the CME’s arrival time. The expected ap max value was
56, and the index time, defining the time profile for the event’s duration, was specified as
i = 3. The tool’s output predicting the CME’s arrival is shown in Figure 9a.

https://www.gfz-potsdam.de/
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The ap index reached its max value of 154 on 5 November 2023 at 15:00–18:00 UT, as
reported by GFZ (http://www-app3.gfz-potsdam.de/kp_index/qlyymm.html accessed
on 1 July 2024). Consequently, the ap tool predicted the geomagnetic storm, albeit at a lower
intensity and with a 3 h time discrepancy (Figure 9b). Furthermore, the algorithm had low
accuracy regarding the maximum value, as the maximum value predicted was 96. This
happened because of the high rarity of such high ap values in the training dataset. By
inserting more similar events in the database that trains the algorithm, the results will be
improved. That is the reason for the high RMSE value of this event, i.e., RMSE = 29.12.

6. Discussion and Conclusions

The accuracy of the ap Prediction tool was improved when the ap data that resulted
from CME characteristics were inserted. This accuracy appears to be more pronounced in
cases of G2 and G3-G4 storms, while the performance for G1 storms shows only a slight
improvement. Considering that G2 and G3–G4 events occur infrequently—just once or
twice per month—and that the shock arrival typically happens a few days after the event,
there is sufficient time to adjust the relevant information and functions within the system.
An automated tool for this process is currently under development.

http://www-app3.gfz-potsdam.de/kp_index/qlyymm.html
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(1) A total of 3946 CMEs and their characteristics from the years 2021 to 2023 were
selected for statistical analysis and the automation of the ap Prediction tool. The ap
Prediction tool has to estimate which CME will arrive at the Earth and cause ap index
fluctuations. This can be accomplished by importing data for all the CMEs occurring
in real time from validated databases (i.e., CACTUS) and by importing data for CMEs
that are expected to reach Earth (i.e., Scoreboard). Moreover, the time of arrival of the
CME to the Earth is an independent process of the tool which is estimated using the
EAM model of the NKUA [31,32].

(2) As mentioned above, in the case of a CME event occurrence, the ap Prediction tool
needs to be adjusted to incorporate the main characteristics of the CME to be able to
extract more accurate results. This is a challenging procedure, because every CME
has a different impact on ap index fluctuations, depending on its characteristics. In
order to thoroughly explore this task, a dedicated algorithm was developed. Multi-
variate linear regression machine learning methods were employed to estimate the
maximum ap value, using the angular width and median velocity of the CMEs as
dependent variables.

(3) Three selected geomagnetic storms which occurred in September and November,
2023 are presented. During these storms, which originated from CMEs, the actual
values of the studied geomagnetic index presented the expected variability. The new
ap Prediction tool (http://apprediction.phys.uoa.gr/ accessed on 1 July 2024) also
showed a trend in space weather conditions. So, the tool can provide satisfactory
results not only during the quiet periods but in the case of disturbed geomagnetic
conditions, when CME events occur. In the future, this work will be extended with
greater statistical analysis and improved results.

These results are possibly related to solar activity and the solar cycle phase. It is noted
that the examined period is in the ascending phase and near the maximum of the current
solar cycle, Solar Cycle 25. During the year 2023, the number of CMEs with and without
shocks was almost constant, while in the years 2021 and 2022, this number seemed to
display seasonal variation. Therefore, the automated procedure of assessing CMEs must be
repeated every 2–3 years in order to provide accurate results.
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